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Throughout this chapter, K will denote a compact set in the Euclidean
d-space Rd, usually with no additional regularity assumption.

1. Distance Function and Hausdorff Distance

Recall that the distance function to K, denoted by dK , is defined by

dK : Rd → R>0

x 7→ min
p∈K
‖x− p‖ .

Definition 1.1 (Offset). The r-offset of K, also called tubular neighborhood
in geometry, is the setKr of points at distance at most r ofK, or equivalently
the sublevel set Kr := {x ∈ Rd; dK(x) 6 r}.

Definition 1.2 (Hausdorff distance). The Hausdorff distance between two
compact subsets A and B of Rd can be defined in term of offsets:

dH(A,B) := min{r > 0 s.t. B ⊂ Ar and A ⊂ Br}.
Loosely speaking, a finite set P is within Hausdorff distance r from a com-
pact set K if it is sampled r-close to K (P ⊂ Kr) and densely in K at scale
r (K ⊂ P r).

As seen in last lesson, alternative characterizations of the Hausdorff dis-
tance are given by

dH(A,B) = max

{
sup
a∈A

dB(a), sup
b∈B

dA(b)

}
,

and

dH(A,B) = ‖dB − dA‖∞ ,
where ‖f‖∞ = supx∈Rd |f(x)|.
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2. Critical Point of Distance Functions

The objective of this section is to give a sufficient condition ensuring that
the topology of the offsets Ks do not depend on s ∈ [r,R].

Definition 2.1 (Homeomorphism). Two topological spaces X,Y are called
homeomorphic if there exists a continuous bijection f : X → Y whose inverse
is also continuous. The function f : X → Y is called an homeomorphism
between X and Y .

Definition 2.2 (Isotopy). Two subsets X,Y ⊂ Rd are said to be isotopic
if there exists a map f : [0, 1]×X → Rd such that:

– f(0, ·) = idX ;
– f(1, X) = Y ;
– for all t ∈ [0, 1], f(t, ·) is a homeomorphism onto its image.

In particular, two isotopic sets are homeomorphic.

To give a motivation, we recall the following celebrated result:

Lemma 2.3 (Isotopy Lemma). Let g : Rd → R be a C1 proper function
(meaning that the sublevel sets of g are compact). Assume that g−1([r,R])
contains no critical point1. Then,

– There exists a homeomorphism Φ : [0, R− r]× g−1({r})→ g−1([r,R]).
– g−1({r}) and g−1({R}) are isotopic.

Sketch of proof. Consider the vector field V (x) := ∇g(x)/ ‖∇g(x)‖2 (thus
explaining the requirement ∇g(x) 6= 0), and for x ∈ g−1(r), define Φ(x, t)
by integrating the vector field, i.e.

Φ(x, 0) = x and
d

dt
Φ(x, t) = V (Φ(x, t)).

It is (rather) easy to check that Φ(·, t) : g−1(r)→ g−1(r+ t) is a homeomor-
phism, so that g−1(r) and g−1(R) are isotopic. �

The difficulty for applying this proposition to distance functions is that
these functions are usually non-smooth (i.e. merely Lipschitz-regular). Grove
introduced the following definition, which allows to define critical points
without using the gradient of dK .

Definition 2.4 (Projection Function). A point p of K that realizes the
minimum in the definition (1) of the distance function dK(x) is called a
projection of x on K. The set of such projections is denoted projK(x), and
is always non-empty by compactness of K:

projK(x) = argmin
p∈K

‖x− p‖ .

Definition 2.5 (Critical Point for Distance Function). Let K be a compact
subset of Rd. A point x ∈ Rd \K is called critical for dK if it belongs to the
convex hull of its projection set, i.e. x ∈ conv(projK(x))

Example 2.6. Let us check that this definition makes sense.

– If K = {p, q} ⊂ R2 with p 6= q, then the only critical point is x = 1
2(p+q).

1A point x ∈ Rd is called critical for g ∈ C1(Rd,R) if ∇g(x) = 0.
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– If K = {p, q, r} ⊂ R2 consists of three distinct points, denote by c the
circumcenter of the triangle [p, q, r] (i.e. the center of its circumscribed
circle, i.e. the intersection of the the line segment bisectors). The mid-
points of the edges are always critical points. Moreover, if c belongs to
conv(pqr), it is critical (and one can check that if c belongs to the interior
of conv(pqr), the critical point induces a change in topology of the offsets).

Theorem 2.7 (Grove’s Isotopy Lemma). Let K be a compact set, and as-

sume that there exists no critical point in K [r,R] := d−1
K ([r,R]) for 0 < r 6

R < +∞. Then,

– There exists a homeomorphism Φ : ∂(Kr) × [0, R − r] → K [r,R] such that
Φ(·, 0) = id∂(Kr).

– Kr and KR are isotopic.

Proof. Similar but much more technical. �

3. Homotopy Equivalence and Weak Feature Size

The rest of these notes aim at answering the following question:

Given a sample P sampled densely enough near a “regular”
set K ⊂ Rd, may we “recover the topology” of Kr with Ps
for some wisely chosen s > 0?

To answer this question, we shall identify what a “regular” set may mean,
and in what sense we can “recover topology”.

Definition 3.1 (Weak Feature Size). The weak feature size of a compact
set K ⊂ Rd is defined by

wfs(K) = sup{R > 0 | d−1
K ((0, R)) contains no critical point}.

Definition 3.2 (Homotopy). Two continuous functions f0, f1 : X → Y are
called homotopic if there exists a continuous function f : [0, 1] × X → Y
such that f0 = f(0, ·) and f1 = f(1, ·). We denote the fact that f0 and f1

are homotopic by f0 ' f1.

f0(x) = x

ft(x) = (1− t)x

f1(x) = 0

(a)

Homotopic

Homotopic

Not homotopic

(b)

Figure 1. An example of two maps that are homotopic (a)
and examples of spaces that are homotopy equivalent, but
not homeomorphic (b).
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Definition 3.3 (Homotopy Equivalence). A function f : X → Y is a ho-
motopy equivalence between X and Y if there exists a map g : Y → X such
that f ◦ g ' idY and g ◦ f ' idX . If this occurs, we say that the two spaces
are called homotopy equivalent or that they have the same homotopy type.
Example 3.4 (See Figure 1).

– The unit ball X = B(0, 1) is not homeomorphic to Y = {0}, but X and Y
are nonetheless homotopy equivalent. Consider f : X → Y the projection
map and g : Y ↪→ X the inclusion. Then, g ◦ f = idY and g ◦ f = f . Now,
let ft : x ∈ X 7→ (1− t)x+ tf(x). Then, f0 = idX and f1 = f .

– A circle and an annulus are also homotopy equivalent.
– A circle and a point are not homotopy equivalent, as we will see in next

chapter on homology.

Remark 3.5. The homotopy equivalences considered in the previous ex-
amples are called rectractions. Namely, f : X → Y is a retraction if the
restriction of f to Y is the identity map. A deformation retract is a homo-
topy between a retraction f : X → Y and the identity map on X.

Example 3.6. LetK be a compact set, and assume thatK [r,R] = d−1
K ([r,R])

does not contain any critical point. Consider f : ∂(Kr) → K [r,R] the in-

clusion map, and let Φ : ∂(Kr) × [r,R] → K [r,R] be the homeomorphism

given by Grove’s Isotopy Lemma (Theorem 2.7). Define g : K [r,R] → ∂(Kr)
as g = π1 ◦ Φ−1, where π1 is the projection map on the first factor. Our
goal is to show that g is the homotopic inverse of f , and therefore that f
is a homotopy equivalence. First notice that g ◦ f = id∂(Kr). For t ∈ [0, 1],
define

φt : ∂(Kr)× [0, R− r]→ K [r,R]

(x, s) 7→ Φ(x, ts)

and gt = φt ◦ Φ−1 : K [r,R] → K [r,R]. Then, g0 = g is homotopic to g1 =
idK[r,R] . Under the same assumptions, the inclusion Kr ↪→ KR is also a
homotopy equivalence.

Theorem 3.7 (Chazal, Lieutier). Let K,L ⊂ Rd be two compact sets such
that dH(K,L) = ε < ε0 := 1

2 min(wfs(K),wfs(L)).
Then, for every 0 < r 6 ε0, the offsets Kr and Lr are homotopic.

Remark 3.8. – In general, r cannot be set to 0 in Theorem 3.7. Said
otherwise, even if wfs(K) > 0, the homotopy type of K and that of its
small thickenings are not always the same An example is given by the
so-called Warsaw circle that we now describe. Let K ⊂ R2 be the union
of K1 = {0} × [−2, 1], K2 = [0, 1] × {−2}, K3 = {1} × [−2, 1] and K4 =
{(x, sin(2π/x)), x ∈ [0, 1]} (see Figure 2).

One can easily check that K is a simply connected compact set with
positive wfs(K) > 0, while the offsets of K are homeomorphic to annuli
and that K is the boundary of a topological disk [26, 2.4.8].

consists of a planar closed curve containing oscillations similar to the
ones of the graph of x 7→ sin(1/x) near 0. Because of these oscillations,
the curve is simply connected. However any sufficiently small offset of the
curve has a nontrivial fundamental group and hence a different homotopy
type as the curve itself.
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Figure 2. A compact set with positive weak feature size
whose homotopy type differs from that of its offsets.

– Critical points are unstable with respect to the Hausdorff metric dH.
Hence, Theorem 3.7 should not be considered as a reconstruction result
from point clouds. Indeed, if L = P is a finite point cloud sampled on
K, then wfs(P) = 1

2 minx 6=y∈P ‖y − x‖ is half the minimum interpoint
distance in P, while dH(K,P) would typically be of the order of the maxi-
mum interpoint distance maxx∈P dP\{x}(x) of P. As a result, the condition

“dH(K,P) < 1
2 min(wfs(K),wfs(P))” may not be fulfilled.

Proof. Let δ > 0 be such that 2ε0 > 2ε + δ. Since dH(K,L) 6 ε, we have
the following commutative diagram, where each map is an inclusion:

Kδ a0 //
d0

''

Kδ+ε
d1

((

a1 // Kδ+2ε

Lδ

c0

77

b0 // Lδ+ε

c1

66

b1 // Lδ+2ε

By Grove’s isotopy lemma (Theorem 2.7), we know that Kr and Kδ are
isotopic, as well as Lr and Lδ. Also from Theorem 2.7, we know that the
inclusion a0 : Kδ → Kδ+ε is a homotopy equivalence and therefore that
there exist a map a−1

0 : Kδ+ε → Kδ such that a0a
−1
0 ' idKδ+ε and a−1

0 a0 '
idKδ . Similar statements hold for a1, b0 and b1 as well. By transitivity
of homotopy equivalence, it therefore suffices to prove that e.g. c1 is a
homotopy equivalence. More precisely, we will prove that b−1

1 ◦ d1 ◦ a−1
1 is a

homotopic inverse for c1. Indeed, since all maps are inclusion, we have

d1 ◦ a0 = b1 ◦ d0, i.e. d1 ' b1 ◦ d0 ◦ a−1
0 .

Then,

c1 ◦ b−1
1 ◦ d1 ◦ a−1

1 ' c1 ◦ b−1
1 ◦ b1 ◦ d0 ◦ a−1

0 ◦ a
−1
1

' c1 ◦ d0 ◦ a−1
0 ◦ a

−1
1

' idKδ+2ε ,

where we used the equality c1 ◦ d0 = a1 ◦ a0 to get to the last line. �
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4. Generalized Gradient of dK and µ-Critical Points

Remark 4.1. The distance function to a compact set K ⊂ Rd has the
following properties:

(i) dK is 1-Lipschitz, and therefore differentiable almost everywhere.
(ii) dK is differentiable at x iff projK(x) is a singleton. We denote

Med(K) := {x ∈ Rd | card(projK(x)) > 1},

the medial axis of K, which by the previous remark has zero Lebesgue
measure, and πK : Rd \Med(K)→ K the uniquely defined projection.

(iii) φK := ‖·‖2 − d2
K is convex. For this reason, we say that dK is semi-

concave. In particular, d2
K is as regular as a concave function.

Definition 4.2 (Generalized Gradient). Given x ∈ Rd \ K, let ΓK(x) be
the convex hull of projK(x) and define the generalized gradient of dK at x
as

∇gdK(x) :=
x− πΓK(x)(x)

dK(x)
.

Example 4.3. – Given x 6∈ K, ∇gdK(x) = 0 iff x ∈ conv(projK(x)) iff x is
critical;

– ‖∇gdK(x)‖ = 1 =⇒ dK is differentiable at x;
– If K = {p1, . . . , pn}, the generalized gradient can be evaluated easily, and

its flow follows the boundary of the Voronoi cells.

K

Med(K)

b > a

a

x

ΓK(x)

projK(x)

Critical points

Figure 3. A set K ⊂ R2 and its associated medial axis
and critical points. Notice that for the point x ∈ Med(K)
displayed, ‖∇gdK(x)‖ = dΓK(x)(x)/dK(x) = 1/

√
2.

Theorem 4.4 (Lieutier). The vector field ∇gdK is integrable, i.e.

∀x ∈ Rd \K,∃γ : [0,+∞]→ Rd s.t.

{
γ(0) = x

γ′(t) = ∇gdK(γ(t))

Moreover, if σ : [0, R] → Rd is the reparametrization of γ by arclength
(assuming that γ does not encounter critical points in the corresponding
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time interval), one has

dK(σ(r)) = dK(x) +

∫ r

0
‖∇gdK(σ(s))‖ ds.

Definition 4.5 (Subdifferential, Directional Derivatives). Given a function
f : Rd → R, we denote

∂f(x) = {g ∈ Rd | ∀y ∈ Rd, f(y) > f(x) + 〈y − x, g〉},

f ′(x; v) := lim sup
t→0+

f(x+ tv)− f(x)

t
.

Lemma 4.6. Given x ∈ Rd, denote ΓK(x) the convex hull of projK(x) and

φK = ‖·‖2 − d2
K .

(i) ∂φK(x) = 2ΓK(x)
(ii) φ′K(x; v) = maxp∈ΓK(x) 2〈p, v〉

(iii)
(
d2
K

)′
(x; v) = minp∈ΓK(x) 2〈x− p, v〉

(iv) d′K(x; v) = minp∈ΓK(x)〈 x−pdK(x) , v〉
(v) ‖∇gdK(x)‖ = max‖v‖=1 d′K(x; v).

Partial proof. (i) Since dK(x)2 = infp∈K ‖x− p‖2,

φK(x) = max
p∈K
‖x‖2 − ‖x− p‖2 = max

p∈K
‖p‖2 − 2〈x, p〉,

for any projection p ∈ projK(x) and y ∈ Rd we get

φK(y) > ‖p‖2 − 2〈y, p〉 = φK(x) + 〈x− y, 2p〉.
This gives us the inclusion 2 projK(x) ⊂ ∂φK(x), and taking convex
combinations of elements in projK(x) we get 2ΓK(x) ⊂ ∂φK(x).

(ii) From convex analysis, we know that φ′K(x; v) = maxg∈∂φK(x)〈g, v〉.
With (i), this gives us the conclusion.

(iii)–(v) Follow easily.
�

The following result provides quantitative stability of µ-critical points.

Theorem 4.7 (Chazal, Cohen-Steiner, Lieutier). Let K,L ⊂ Rd be two
compact sets with dH(K,L) 6 ε and let x ∈ Rd such that ‖∇gdK(x)‖ 6 µ.
Then, there exists a point y such that

‖x− y‖ 6 2
√
εdK(x)

µ′ := ‖∇gdL(y)‖ 6 µ+ 2
√
ε/dK(x).

Proof.

Step 1. Consider p = πΓK(x)(x), so that 2p belongs to ∂φK(x), i.e. for every point

y ∈ Rd,
‖y‖2 − d2

K(y) > ‖x‖2 − d2
K(x) + 2〈x− y, p〉

Since

‖x‖2 − ‖y‖2 = 〈x− y, x+ y〉 = 〈x− y, y − x+ 2x〉

= −‖x− y‖2 + 2〈x, x− y〉,
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we have

d2
K(x) + ‖x− y‖2 + 2〈x− y, x− p〉 > d2

K(y),

so that by Cauchy-Schwarz,

d2
K(x) + ‖x− y‖2 + 2µdK(x) ‖x− y‖ > d2

K(y).

Step 2. Now, for R > 0 to be chosen later, take σ : [0, R] → Rd the arclength
parametrization of an integral curve of ∇gdL starting from σ(0) = x. If
it reaches a critical point before the desired length R, there is nothing to
prove. If not, taking y = σ(R) one has

dL(y) = dL(x) +

∫ R

0
‖∇gdL(σ(r))‖dr.

There must therefore exist p ∈ σ([0, R]) such that

‖∇gdL(p)‖ 6 dL(y)− dL(x)

R
.

Our goal is now to upper bound the norm of this generalized gradient.
Since we assumed that dH(K,L) 6 ε we have using (4) that

dL(y)− dL(x) 6 dK(y)− dK(x) + 2ε

6 dK(x)

√1 + 2
µ ‖x− y‖

dK(x)
+
‖x− y‖2

dK(x)2
− 1

+ 2ε

6 µ ‖x− y‖+
‖x− y‖2

2dK(x)
+ 2ε,

where we used the concavity inequality
√

1 + x − 1 6 x
2 . Dividing the

inequality by R and recalling that ‖x− y‖ 6 R, we get

µ′ := ‖∇gdL(p)‖ 6 µ+
R

2dK(x)
+ 2

ε

R
.

Now, take R so that the last two terms are equal, i.e. R2 = 4dK(x)ε, we
get the theorem.

�

Definition 4.8 (µ-Critical Point). Let K ⊂ Rd be a compact set. A point
x ∈ Rd is called µ-critical for dK if

∥∥∇dgK(x)
∥∥ 6 µ. The critical function of

dK is defined as

χK(r) = min
x∈∂(Kr)

∥∥∇dgK(x)
∥∥ .

Remark 4.9. Thanks to the upper semi-continuity of the subdifferential of
a convex function, the function x 7→

∥∥∇dgK(x)
∥∥ is lower semi-continuous.

This implies that the minimum in the definition of χK is indeed attained.

Corollary 4.10. Let K,L be two compact sets with dH(K,L) 6 ε. Assume
that χK > µ on [r,R] (with r > 0). Then,

χL > µ− 2
√
ε/r on [r + 2

√
εR,R− 2

√
εR].
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5. Reconstruction of Compact Sets

Definition 5.1 (µ-Reach). The µ-reach of a compact set is defined as

reachµ(K) = sup{r > 0 | χK > µ on [0, r]}
= sup{r > 0 | ∀x ∈ Kr, ‖∇gdK(x)‖ > µ}.

Example 5.2. Note that:

(i) µ 7→ reachµ(K) is nonincreasing.
(ii) For µ > 0, reachµ(K) 6 wfs(K).
(iii) For µ = 1, denote reach(K) := reach1(K). Then,

reach(K) = sup{r > 0 | Kr ∩Med(K) = ∅};

(iv) For compact smooth submanifolds, 0 < reach(K) 6 minimum radius of
curvature.

(v) For piecewise linear submanifolds, reach(K) = 0 but there exists µ > 0
such that reachµ(K) > 0.

(vi) The set K ⊂ R2 of Figure 3 has wfs(K) = a, and

reachµ(K) =

{
a for 0 < µ 6 1/

√
2,

0 for 1/
√

2 < µ 6 1

Exercise 5.3. Consider the set K ⊂ R2 as depicted in Figure 3, but for
b < a. Draw its medial axis. What are its critical values? What are wfs(K),
reachµ(K) (0 < µ < 1), and reach(K)?

Theorem 5.4 (Chazal, Cohen-Steiner, Lieutier). Let K be a compact set
with positive µ-reach, and L be an approximation of K with dH(K,L) 6 ε.
Then, dL has no critical values in the interval

I = (4ε/µ2, reachµ(K)− 3ε).

In particular, if dH(K,L) = ε < κ reachµ(K) with κ 6 µ2

5µ2+12
, then Kr and

Ls are homotopy equivalent as soon as

0 < r < reachµ(K) and 4
ε

µ2
6 s < reachµ(K)− 3ε.

Proof.

Statement 1. We prove first the statement about critical values. Assume by contradic-
tion that there exists x ∈ Rd such that dL(x) ∈ I and x is critical for L,
i.e. ‖∇dL(x)‖ = µx = 0. Then, by the stability theorem, there exists y
with

‖x− y‖ 6 2
√
εdL(x)

µy =
∥∥∇dgK(y)

∥∥ 6 µx + 2
√
ε/dL(x) < µ

To get the contradiction, it therefore suffices to establish that dK(y) <
reachµ(K). To see this, recall that by semiconcavity one has (see (4)),

d2
L(y) 6 d2

L(x) + ‖x− y‖2 + 2µx ‖x− y‖

= d2
L(x) + ‖x− y‖2

6 d2
L(x) + 4εdL(x).
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By concavity of the square root,

dL(y) 6 dL(x)(1 + 2ε/dL(x)) = dL(x) + 2ε

< reachµ(K)− 3ε+ 2ε

Finally, we use dH(K,L) 6 ε to get dK(x) < reachµ(K), a contradiction.
Statement 2. Since dL has no critical values in I, it suffices to establish the statement

for s = 4ε/µ2. Note that

dH(K,Ls) 6 ε+ 4ε/µ2

wfs(Ls) > reachµ(K)− 3ε− 4ε/µ2

wfs(K) > reachµ(K),

where the second inequality uses the fact that L and Ls have the same
critical points. From Theorem 3.7, the result follows as soon as

dH(K,Ls) <
1

2
min(wfs(K),wfs(Ls))

⇐=ε(2 + 8/µ2) < reachµ(K)− ε(3 + 4/µ2)

⇐⇒ε(5 + 12/µ2) < reachµ(K). �

6. Support Reconstruction from Random Point Clouds

6.1. Measure, Diameter, and Sampling.

Definition 6.1 ((a, b)-Standard Measure). The distribution µ is said to be
(a, b)-standard at scale r0 if for all x ∈ supp(µ) and all r 6 r0,

µ (B(x, r)) > arb.

Roughly speaking, a measure that is (a, b)-standard at scale r0 behaves
like the b-dimensional Lebesgue measure, though b needs not be an integer.
This assumption is pretty popular in the literature on set estimation, and
its properties will be used extensively in the results of this course. So far,
we have considered the case b = d in Rd for Density Support Estimation. As
we will see shortly, such an assumption gives bounds on massiveness of the
support supp(µ) ⊂ Rd.

To measure massiveness of subsets K ⊂ Rd, we will (again!) use packing
and covering numbers. That is, numbers of balls optimally displayed at
some scale r in K. A r-covering of K ⊂ Rd is a subset X = {x1, . . . , xk} ⊂
K such that for all x ∈ K, dX (x) 6 r. A r-packing of K is a subset
Y = {y1, . . . , yk} ⊂ K such that for all y, y′ ∈ Y, B(y, r) ∩ B(y′, r) = ∅ (or
equivalently ‖y′ − y‖ > 2r).

Definition 6.2 (Covering and Packing numbers). For K ⊂ Rd and r > 0,
the covering number cv(K, r) is the minimum number of balls of radius r
that are necessary to cover K:

cv(K, r) = min {k > 0 | there exists a r-covering of cardinality k} .

The packing number pk(K, r) is the maximum number of disjoint balls of
radius r that can be packed in K:

pk(K, r) = max {k > 0 | there exists a r-packing of cardinality k} .
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For a given space K, covering and packing numbers usually have the same
order of magnitude, as stated in the following result.

Proposition 6.3. For all K ⊂ Rd and r > 0,

pk(K, 2r) 6 cv(K, 2r) 6 pk(K, r).

Proof. For the left-hand side inequality, notice that if K is covered by a
family of balls of radius 2r, each of these balls contains at most one point of
a maximal packing Y at scale 2r. Conversely, the right-hand side inequality
follows from the fact that a maximal r-packing Y is always a 2r-covering. If
it was not the case, one could add a point x0 such that dY(x0) > 2r, which
is impossible by maximality of Y. �

It is crucial to note that any (a, b)-standard measure µ has a controlled
support massiveness, in the following sense.

Proposition 6.4. Let µ be a (a, b)-standard probability distribution at scale
r0 > 0. Then for r 6 r0,

pk (supp(µ), r) 6
1

arb
.

For r 6 2r0,

cv (supp(µ), r) 6
2b

arb
.

Proof. Let Y = {y1, . . . , yN}, N = pk (supp(µ), r), be a maximal r-packing
of supp(µ). We have

1 = µ
(
Rd
)
> µ

(
∪Ni=1B(yi, r)

)
>

N∑
i=1

µ (B(yi, r))

> Narb = pk (supp(µ), r) arb,

hence the first result. The bound on cv (supp(µ), r) then follows from (6.3).
�

If it is assumed to be path-connected, one can derive an upper bound on
the diameter diam(K) = supx,y∈K ‖y − x‖ of such a support. This is based
on the following bound.

Lemma 6.5. Let K ⊂ Rd be a bounded subset. If K is path-connected, then
for all ε > 0, diam(K) 6 2ε cv(K, ε).

Proof. Let p, q ∈ K and γ : [0, 1]→ K be a continuous path joining γ(0) = p
and γ(1) = q. Writing N = cv(K, ε), let x1, . . . , xN ∈ Rd be the centers
of a minimal covering of K by open balls of radii ε. We let Ui denote
{t ∈ [0, 1]| ‖γ(t)− xi‖ < ε}. By construction of the covering, there exists
x(1) ∈ {x1, . . . , xN} such that

∥∥p− x(1)

∥∥ < ε. Then U(1) 3 γ(0) = p is a
non-empty open subset of [0, 1], so that t(1) = supU(1) is positive. If t(1) = 1,

then
∥∥q − x(1)

∥∥ 6 ε, and in particular ‖q − p‖ 6 2ε. If t(1) < 1, since U(1)

is an open subset of [0, 1], we see that γ(t(1)) /∈ U(1). But ∪Ni=1Ui is an
open cover of [0, 1], which yields the existence U(2) such that γ(t(1)) ∈ U(2),
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and for all t < t(1), γ(t) /∈ U(2). Then consider t(2) = supU(2), and so
on. Doing so by induction, we build a sequence 0 < t(1) < . . . < t(k) 6 1,
for k 6 N , and distinct centers x(1), . . . , x(k) ∈ {x1, . . . , xN}, such that∥∥p− x(1)

∥∥ < ε,
∥∥q − x(k)

∥∥ 6 ε, with
∥∥γ(t(i))− x(i)

∥∥ 6 ε for 1 6 i 6 N and∥∥γ(t(i))− x(i+1)

∥∥ < ε for 1 6 i 6 N − 1. In particular,
∥∥x(i) − x(i+1)

∥∥ 6 2ε
for all 1 6 i 6 N − 1. To conclude, write

‖p− q‖ 6
∥∥p− x(1)

∥∥+
∥∥x(1) − x(N)

∥∥+
∥∥q − x(N)

∥∥
6 ε+

N−1∑
i=1

∥∥x(i) − x(i+1)

∥∥+ ε

6 2Nε = 2ε cv(K, ε).

Since this bound holds for all p, q ∈ K, we get the announced bound on the
diameter of K. �

Thereby, the following Proposition 6.6 follows from Lemma 6.5 applied
with r = 2r0, together with Proposition 6.4.

Proposition 6.6. If µ is (a, b)-standard at scale r0 and has a path-connected
support supp(µ), then

diam (supp(µ)) 6 4r1−b
0 /a.

Remark 6.7. Path-connectedness is crucial here. Indeed, consider Kx =
B(−x, 1)∪B(x, 1) ⊂ Rd for ‖x‖ arbitrarily large. Then diam(Kx) = 2 ‖x‖+
1 → ∞ although the uniform distribution on Kx is (a, d)-standard at scale
r0 = 1 with fixed a > 0.

Further investigating the properties of (a, b)-standard measures at scale
r0 > 0, let us now give the convergence rate of a sample point cloud Xn =
{X1, . . . , Xn} towards its underlying support supp(µ).

Proposition 6.8. Let µ be an (a, b)-standard probability measure at scale
r0 > 0, and Xn = {X1, . . . , Xn} is an i.i.d. n-sample with common distri-
bution µ, then for all r 6 2r0,

P
(
dH

(
supp(µ),Xn

)
> r
)
6

4b

arb
exp

(
−n a

2b
rb
)
.

In particular:

(i) For all α > 0, there exists Ca,b,α > 0 such that for n large enough so

that
(
Ca,b,α

logn
n

)1/b
6 2r0, with probability at least 1−

(
1
n

)α
,

dH

(
supp(µ),Xn

)
6

(
Ca,b,α

log n

n

)1/b

.

(ii) For all r 6 2r0, dH

(
supp(µ),Xn

)
6 r with probability at least 1 − δ, as

soon as

n >
C ′a,b
rb

(log (1/r) + log (1/δ)) .
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In other words, with n points, the typical density of sampling of a (a, b)-

standard measure is of order (log n/n)1/b. Roughly speaking, it relies on the
fact that standard measures have uniformly spread mass on their support.
Hence, an n-sample would visit all the areas of its support with high prob-
ability. This comes from the fact that the massiveness of supp(µ) (in terms
of covering number) is controlled.

Proof. Since Xn ⊂ supp(µ) with probability one, the Hausdorff distance
between Xn and supp(µ) rewrites as

dH

(
supp(µ),Xn

)
= sup

x∈supp(µ)
min

16j6n
‖Xj − x‖ .

For some δ > 0 to be chosen later, consider a minimal δ-covering X =
{x1, . . . , xN} of supp(µ), N = cv(supp(µ), δ). By definition of a δ-covering,
for all x ∈ supp(µ) there exists some xi0 ∈ X such that ‖xi0 − x‖ 6 δ.
Hence,

min
16j6n

‖Xj − x‖ 6 min
16j6n

‖xi0 − x‖+ ‖Xj − xi0‖

6 δ + min
16j6n

‖Xj − xi0‖

6 δ + max
16i6N

min
16j6n

‖Xj − xi‖ .

As a consequence,

P
(
dH

(
supp(µ),Xn

)
> r
)
6 P

(
max

16i6N
min

16j6n
‖Xj − xi‖ > r − δ

)
6

N∑
i=1

P
(

min
16j6n

‖Xj − xi‖ > r − δ
)

But whenever r − δ 6 r0, for all 1 6 i 6 k,

P
(

min
16j6n

‖Xj − xi‖ > r − δ
)

=
∏

16j6n

P (‖Xj − xi‖ > r − δ)

= (1− µ (B(xi, r − δ)))n

6
(

1− a(r − δ)b
)n

6 exp
(
−na(r − δ)b

)
.

Therefore, Proposition 6.4 yields for all δ 6 2r0 such that r − δ 6 r0,

P
(
dH

(
supp(µ),Xn

)
> r
)
6 cv(supp(µ), δ) exp

(
−na(r − δ)b

)
6

2b

aδb
exp

(
−na(r − δ)b

)
.

Setting δ = r/2 yields the announced result. �

6.2. A Probabilistic Reconstruction Result.

Theorem 6.9. Let µ be a probability distribution and K = supp(µ) be such
that:

– reach(K) > 0;
– µ is (a, b)-standard at scale r0 > 0.
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Let Xn = {X1, . . . , Xn} be a i.i.d. sample of µ, and ε < 1
17 reach(K) ∧ 2r0.

Then for all and n > Ca,b (log (1/ε) + log (1/δ)) /εb,

P
(
K

1
2

reach(K) and X4ε
n are homotopy equivalent

)
> 1− δ.

Proof. From Proposition 6.8, P (dH (K, supp(µ)) 6 ε) > 1−δ. Hence, on this
event, applying Theorem 5.4 with L = Xn, µ = 1, κ = 1/17, r = reach(K)/2
and s = 4ε yields the result. �

7. Further Sources

These lecture notes are courtesy of Quentin Mérigot. Their structure
mainly follows [CL05] and [CCSL09].

References

[CCSL09] Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theorem
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